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NONLINEAR DISCRETE NEUMANN PROBLEM INVOLVING

p(k)-LAPLACIAN TYPE OPERATOR

BRAHIM MOUSSA 1, ISMAËL NYANQUINI 2 AND STANISLAS OUARO 3

Abstract. In this paper, we prove the existence and multiplicity of solutions for
a discrete nonlinear Neumann problem involving a p(k)-Laplacian operator in a
T -dimensional Banach space. The technical approach is based on critical point
theory and variational methods.

1. Introduction

In this paper, we study the existence and multiplicity of solutions for a discrete
nonlinear Neumann problem of the following p(k)-Laplacian operator

−△(a(k − 1, |△u(k − 1)|)△u(k − 1)) + q(k)|u(k)|p(k)−2u(k)

= λf(k, u(k)), k ∈ Z(1, T ),
△u(0) = △u(T ) = 0,

(1.1)

where T ≥ 2 is a fixed positive integer, Z(a, b) denotes the discrete interval {a, a+
1, . . . , b− 1, b} with a and b integers such that a < b, △u(k) = u(k+1)−u(k) is the
forward difference operator and p : Z(0, T ) → (1,∞), q : Z(1, T ) → (1,∞) are given
functions, λ > 0 is a real parameter and f : Z(1, T )×R → R is a continuous function
with respect to the second variable. Moreover, the function a(k, ·) : [0,∞) → [0,∞)
is continuous for all k ∈ Z(0, T ).

Throughout this paper, we denote

p+ := max
k∈Z(0,T )

p(k), p− := min
k∈Z(0,T )

p(k),

q := max
k∈Z(1,T )

q(k), q := min
k∈Z(1,T )

q(k), Q :=
T∑
k=1

q(k).

For the function a, we assume the following.

(H1) There exist a1 : Z(0, T ) → [0,∞) and a constant a2 > 0 such that

|a(k, |ξ|)ξ| ≤ a1(k) + a2|ξ|p(k)−1,

for all k ∈ Z(0, T ) and ξ ∈ R.
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6 BRAHIM MOUSSA, ISMAËL NYANQUINI AND STANISLAS OUARO

(H2) For all k ∈ Z(0, T ) and ξ > 0, one has

0 ≤ a(k, |ξ|)ξ2 ≤ p+
∫ |ξ|

0
a(k, s)s ds.

(H3) There exists a positive constant c such that

min

{
a(k, |ξ|), |ξ|∂a

∂ξ
(k, |ξ|) + a(k, |ξ|)

}
≥ c|ξ|p(k)−2,

for all k ∈ Z(0, T ) and ξ ∈ R.
Next, we introduce A0 : Z(1, T )× [0,∞) → [0,∞) defined by

A0(k, t) =

∫ t

0
a(k, ξ)ξ dξ.

Remark 1.1. As examples of functions A0 and a satisfying the above assump-
tions, we can give the following.

(1) If we let

a(k, |ξ|) = |ξ|p(k)−2, for all (k, ξ) ∈ Z(1, T )× R,
then

A0(k, |ξ|) =
1

p(k)
|ξ|p(k).

(2) If we put

a(k, |ξ|) =
(
1 + |ξ|2

) p(k)−2
2 , for all (k, ξ) ∈ Z(1, T )× R,

then

A0(k, |ξ|) =
1

p(k)

[(
1 + |ξ|2

) p(k)
2 − 1

]
.

(3) If we set

a(k, |ξ|) =

(
1 +

|ξ|p(k)√
1 + |ξ|2p(k)

)
|ξ|p(k)−2, for all (k, ξ) ∈ Z(1, T )× R,

then

A0(k, |ξ|) =
1

p(k)
|ξ|p(k) +

√
1 + |ξ|2p(k)
p(k)

.

Differential equations with variable exponent have been widely used to model
many phenomena arising from the study of elastic mechanics [40], electrorheological
fluids [36, 37] and image restoration [17]. In recent years, many authors have dis-
cussed the existence and multiplicity of solutions for difference equations with bound-
ary value conditions using fixed point theory, lower and upper solutions method,
Rabinowitz’s global bifurcation theorem, variational methods, critical point theory,
etc. We refer the readers to the monograph of Agarwal [1] and the papers [3, 6, 24].
In 2003, variational methods were employed to study difference equations [23], by
which various results are investigated. We refer the readers to the recent work [18]
for the applications of variational methods on p(k)-difference equations.

In [12], Candito and D’Agúı investigated, by using an abstract local minimum
theorem due to Bonanno et al. [8] and truncation techniques, the existence of
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constant-sign solutions for a nonlinear Neumann boundary value problem involving
the discrete p-Laplacian. In [38], Tian and Ge established the existence of solu-
tions for a second-order discrete Neumann problem with a p-Laplacian. For discrete
problems with p(k)-Laplacian operator, Gao in [20] using Rabinowitz’s global bifur-
cation theorem, studied the existence of positive solutions for the discrete boundary
value problems. Guiro et al. in [21] proved, by using the minimization method,
the existence and uniqueness of solutions for a family of discrete boundary value
problems whose right-hand side belongs to a discrete Hilbert space. Bereanu et
al. in [5] undertake the existence of periodic or Neumann solutions for the discrete
p(k)-Laplacian.

In particular, the problem of type (1.1) has been previously studied, for instance,
in [31, 32, 34] by using various methods. For example Moussa et al. in [31], by using
variational methods, have investigated the existence and multiplicity of solutions for
the problem (1.1) with q(k) = 0 for all k ∈ Z(1, T ) and Robin boundary conditions
△u(0) = u(T + 1) = 0. In [32], the present authors studied a more general ver-
sion of problem (1.1) with heteroclinic condition at the boundary. In [34], by using
variational methods and critical point theory, the present authors studied the exis-
tence and multiplicity of weak solutions for discrete Kirchhoff-type equations with
Dirichlet boundary conditions in T -dimensional Banach space.

The significance of problem (1.1) stems from the presence of an nonhomogeneous
differential operator of the form

△(a(k − 1, |△u(k − 1)|)△u(k − 1)),

where a(k, ·) satisfies (H1)-(H3). This kind of operator was recently studied in [33].
It generalizes the usual operators with variable exponent.
Indeed, if we take a(k, |ξ|) = |ξ|p(k)−2 in the problem (1.1), then we obtain the
standard p(k)-Laplace difference operator, that is,

△p(k−1)u(k − 1) := △
(
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
. (1.2)

When a(k, |ξ|) =
(
1 + |ξ|2

) p(k)−2
2 , it corresponds to the generalized mean curvature

operator

△
((

1 + |△u(k − 1)|2
) p(k−1)−2

2 △u(k − 1)

)
. (1.3)

When

a(k, |ξ|) =

(
1 +

|ξ|p(k)√
1 + |ξ|2p(k)

)
|ξ|p(k)−2,

the operator appearing in (1.1) corresponds to a p(k)-Laplacian-like operator, given
by

△

((
1 +

|△u(k − 1)|p(k−1)√
1 + |△u(k − 1)|2p(k−1)

)
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
. (1.4)

Discrete boundary value problems have been intensively studied in the last decade.
For the recent papers involving the discrete p(k)-Laplacian operator, we refer the
readers to [5, 19, 27, 35]. In the case where p(k) is a constant (called the discrete p-
Laplacian operator), we refer the readers to the following recent works [2, 13, 14, 15]
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and references therein. The discrete p(k)-Laplacian operator has more complicated
nonlinearities than the discrete p-Laplacian operator, for example, it is not homoge-
neous. The difference equations involving nonhomogeneous difference operators of
type (1.2) were initiated by Mihăilescu et al. in [28], where some eigenvalue prob-
lems were investigated.
Moreover, Barghouthe et al. in [4] established the existence and multiplicity of solu-
tions for (1.4) by using variational methods and critical point theory (see also [30]).
In [26], Koné and Ouaro proved, by using the minimization method, the existence
and uniqueness of weak solutions for anisotropic discrete boundary value problems.

However, little work has been done referring to a nonlinear Neumann boundary
value problem involving the discrete p(k)-Laplacian.

Problem (1.1) can be seen as a discrete variant of the variable exponent anisotropic
problem

−
N∑
i=1

∂

∂xi
ai

(
x,

∣∣∣∣ ∂u∂xi
∣∣∣∣) ∂u

∂xi
+ q(x)|u|pi(x)−2u = λf(x, u) in Ω,

∂u

∂n
= 0 on ∂Ω,

(1.5)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, f ∈ C
(
Ω× R,R

)
a given function satisfying certain properties, q(x) ≥ 1 continuous on Ω for all x ∈ Ω,

pi continuous on Ω,
N∑
i=1

1

p−i
> 1 and 1 < pi(x) < N for all x ∈ Ω and all i ∈ Z(1, T ),

where p−i := inf
x∈Ω

pi(x), λ > 0 a real number.

Recently, I. H. Kim and Y. H. Kim [25] studied problem (1.5) with q(k) = 0 under
homogeneous Dirichlet boundary condition (u = 0 on ∂Ω).

In this paper, we investigate the existence and multiplicity of solutions for the
problem (1.1), using variational methods and critical point theory.

This work is motivated by the paper [12] and is organized as follows. In Section
2, we establish the variational framework associated with problem (1.1). Some
necessary preliminary results are also provided in this section. In Section 3, we
establish the existence of at least one nontrivial solution of problem (1.1), by using
a theorem of Bonanno and Bisci (see [10]). In Section 4, we establish a result of the
existence of at least two nontrivial solutions of problem (1.1) by using a theorem of
Bonanno and D’Agúı (see [7]). Finally, in Section 5, we prove the existence of at
least three nontrivial solutions of problem (1.1), by using a theorem of Bonanno and
Marano (see [9]).

2. Preliminaries

In this section, we first establish the variational framework associated with prob-
lem (1.1).
We consider the following T -dimensional Banach space.

S = {u : Z(0, T + 1) → R such that △u(0) = △u(T ) = 0}
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equipped with the norm

∥u∥ =

(
T+1∑
k=1

|△u(k − 1)|p− +

T∑
k=1

q(k)|u(k)|p−
)1/p−

.

On the space S we will also introduce the norm

∥u∥p+ =

(
T+1∑
k=1

|△u(k − 1)|p+ +
T∑
k=1

q(k)|u(k)|p+
)1/p+

and the Luxemburg norm

∥u∥p(·) = inf

{
µ > 0 :

T+1∑
k=1

∣∣∣∣△u(k − 1)

µ

∣∣∣∣p(k−1)

+
T∑
k=1

q(k)

∣∣∣∣u(k)µ
∣∣∣∣p(k) ≤ 1

}
.

We now recall the discrete weighted Hölder-type inequality (see [29]).

Lemma 2.1. (Discrete weighted Hölder-type inequality) Let {ak}Nk=1, {bk}Nk=1

and {ωk}Nk=1 be sequences of positive numbers.

Let p, q > 1 be such that
1

p
+

1

q
= 1. Then,

N∑
k=1

ωkakbk ≤

(
N∑
k=1

ωka
p
k

) 1
p
(

N∑
k=1

ωkb
q
k

) 1
q

.

In the sequel, we will use the following inequality.

K∥u∥p+ ≤ ∥u∥ ≤ 2
p+−p−

p+p− K∥u∥p+ , (2.1)

whereK := (max{T + 1, Q})
p+−p−

p+p− . Indeed, by weighted Hölder’s inequality (see Lemma 2.1),
we get

T∑
k=1

q(k) |u(k)|p
−

≤

(
T∑
k=1

q(k)(1)
p+

p+−p−

) p+−p−

p+
(

T∑
k=1

q(k)
(
|u(k)|p

−
) p+

p−

) p−

p+

≤ Q
p+−p−

p+

(
T∑
k=1

q(k)|u(k)|p+
) p−

p+

.

Using the same arguments, one has

T+1∑
k=1

|△u(k − 1)|p
−
≤ (T + 1)

p+−p−

p+

(
T+1∑
k=1

|△u(k − 1)|p+
) p−

p+

.
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Then, we get from the above inequalities and the fact that
p−

p+
≤ 1, the following.

∥u∥p− ≤ (max{T + 1, Q})
p+−p−

p+

×

(T+1∑
k=1

|△u(k − 1)|p+
) p−

p+

+

(
T∑
k=1

q(k)|u(k)|p+
) p−

p+


≤ 2

1− p−

p+ (max{T + 1, Q})
p+−p−

p+

×

(
T+1∑
k=1

|△u(k − 1)|p+ +
T∑
k=1

q(k)|u(k)|p+
) p−

p+

= 2
p+−p−

p+ Kp−∥u∥p
−

p+
.

Therefore, ∥u∥ ≤ 2
p+−p−

p+p− K∥u∥p+ .

On the other hand, we get by the fact that
p+

p−
≥ 1, the following.

∥u∥p
+

p+
≤ (max{T + 1, Q})

p−−p+

p−

×

(T+1∑
k=1

|△u(k − 1)|p−
) p+

p−

+

(
T∑
k=1

q(k)|u(k)|p−
) p+

p−


≤ (max{T + 1, Q})

p−−p+

p−

×

(
T+1∑
k=1

|△u(k − 1)|p− +
T∑
k=1

q(k)|u(k)|p−
) p+

p−

= K−p+∥u∥p+ .

Therefore, K∥u∥p+ ≤ ∥u∥. Thus, we obtain that (2.1) holds.
Moreover, we will also make use of the following norms.

∥u∥∞ := max{|u(k)| : k ∈ Z(1, T )}, for all u ∈ S.

For any u ∈ S, there exists τ ∈ Z(1, T ) such that

|u(τ)|p− ≤

∣∣∣∣∣
T∑
k=τ

u(k)

∣∣∣∣∣
p−

≤
T∑
k=1

|u(k)|p
−
,

then,

min
k∈Z(1,T )

q(k)|u(τ)|p− ≤
T∑
k=1

q(k) |u(k)|p
−

≤
T+1∑
k=1

|△u(k − 1)|p− +

T∑
k=1

q(k)|u(k)|p− .
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Therefore,

∥u∥∞ ≤ 1

q1/p−
∥u∥ for all u ∈ S, (2.2)

where q := min
k∈Z(1,T )

q(k) (see [16]).

Since S is of finite dimension, the two last norms are equivalent. Therefore, there
exist two constants 0 < L1 < L2 such that

L1∥u∥p(·) ≤ ∥u∥ ≤ L2∥u∥p(·). (2.3)

Now, let φ : S → R be defined by

φ(u) =
T+1∑
k=1

|△u(k − 1)|p(k−1) +
T∑
k=1

q(k)|u(k)|p(k). (2.4)

As in [22], we have the following proposition.

Proposition 2.2. If un, u ∈ S then the following properties hold.

∥u∥p(·) < 1 ⇒ ∥u∥p
+

p(·) ≤ φ(u) ≤ ∥u∥p
−

p(·), (2.5)

∥u∥p(·) > 1 ⇒ ∥u∥p
−

p(·) ≤ φ(u) ≤ ∥u∥p
+

p(·), (2.6)

∥un − u∥p(·) → 0 ⇔ φ(un − u) → 0 as n→ ∞. (2.7)

Definition 2.1. We say that u ∈ S is a weak solution of problem (1.1) if

T+1∑
k=1

a(k − 1, |△u(k − 1)|)△u(k − 1)△v(k − 1) +

T∑
k=1

q(k)|u(k)|p(k)−2u(k)v(k)

= λ
T∑
k=1

f(k, u(k))v(k),

for any v ∈ S.

Let us define the functionals Φ,Ψ : S → R as follows.

Φ(u) = Φ1(u) + Φ2(u), (2.8)

Ψ(u) :=
T∑
k=1

∫ u(k)

0
f(k, τ) dτ, (2.9)

where

Φ1(u) :=
T+1∑
k=1

∫ |△u(k−1)|

0
a(k − 1, ξ)ξ dξ, Φ2(u) :=

T∑
k=1

q(k)

p(k)
|u(k)|p(k).

Assuming that for every k ∈ Z(1, T ) and t ∈ R,

F (k, ξ) =

∫ ξ

0
f(k, τ) dτ.

The energy functional associated to problem (1.1) is defined as Iλ : S → R,
Iλ(u) = Φ(u)− λΨ(u). (2.10)
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Thus, it is easy to verify that Φ and Ψ are two functionals of class C1(S,R) whose
Gâteaux derivatives at the point u ∈ S are given by

〈
Φ′(u), v

〉
=

T+1∑
k=1

a(k−1, |△u(k−1)|)△u(k−1)△v(k−1)+
T∑
k=1

q(k)|u(k)|p(k)−2u(k)v(k)

(2.11)
and 〈

Ψ′(u), v
〉
=

T∑
k=1

f(k, u(k))v(k), (2.12)

for all u, v ∈ S.
We deduce by (2.11) and (2.12) that Iλ is of class C1(S,R) and its derivative is given
by 〈

I ′λ(u), v
〉
=
〈
Φ′(u), v

〉
− λ

〈
Ψ′(u), v

〉
,

for all u, v ∈ S. Since △u(0) = △u(T ) = 0, we get

T+1∑
k=1

a(k−1, |△u(k−1)|)△u(k−1)△v(k−1) = −
T∑
k=1

△(a(k−1, |△u(k−1)|)△u(k−1))v(k),

then, 〈
I ′λ(u), v

〉
=

T∑
k=1

[
−△(a(k − 1, |△u(k − 1)|)△u(k − 1)) + q(k)|u(k)|p(k)−2u(k)− λf(k, u(k))

]
v(k).

Thus, the critical points of Iλ are exactly the weak solutions of problem (1.1).
Now, we recall some auxiliary results to be used throughout the paper.

Lemma 2.3. (a) Let u ∈ S and ∥u∥ > 1. Then,

T+1∑
k=1

|△u(k − 1)|p(k−1) +

T∑
k=1

q(k)|u(k)|p(k) ≥ ∥u∥p− − (1 + (1 + q)T ).

(b) Let u ∈ S and ∥u∥ < 1. Then,

T+1∑
k=1

|△u(k − 1)|p(k−1) +
T∑
k=1

q(k)|u(k)|p(k) ≥ 2
p−−p+

p−

Kp+
∥u∥p+ .

(c) Let u ∈ S. Then,

T+1∑
k=1

|△u(k − 1)|p(k−1) +
T∑
k=1

q(k)|u(k)|p(k) ≤ 1

Kp+
∥u∥p+ + (1 + (1 + q)T ).

Proof. Let u ∈ S be fixed. By a similar argument as in [21], we define

βk :=

{
p+ if |△u(k)| ≤ 1

p− if |△u(k)| > 1
and δk :=

{
p+ if |u(k)| ≤ 1

p− if |u(k)| > 1,
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for each k ∈ Z(1, T ).
(a) For u ∈ S with ∥u∥ > 1, one has

T+1∑
k=1

|△u(k − 1)|p(k−1) +
T∑
k=1

q(k)|u(k)|p(k)

≥
T+1∑

k=1,βk=p+

|△u(k − 1)|p
+

+

T+1∑
k=1,βk=p−

|△u(k − 1)|p
−

+
T∑

k=1,δk=p+

q(k) |u(k)|p
+

+

T∑
k=1,δk=p−

q(k) |u(k)|p
−

=
T+1∑
k=1

|△u(k − 1)|p− −
T+1∑

k=1,βk=p+

(
|△u(k − 1)|p− − |△u(k − 1)|p+

)

+

T∑
k=1

q(k)|u(k)|p− − q
T∑

k=1,δk=p+

(
|u(k)|p− − |u(k)|p+

)

≥
T+1∑
k=1

|△u(k − 1)|p− − (T + 1) +
T∑
k=1

q(k)|u(k)|p− − qT

= ∥u∥p− − (1 + (1 + q)T ).

(b) As |△u(k)| < 1 and |u(k)| < 1 for each k ∈ Z(1, T ) since ∥u∥ < 1, we deduce
that

T+1∑
k=1

|△u(k − 1)|p(k−1) ≥
T+1∑
k=1

|△u(k − 1)|p+ and
T∑
k=1

q(k)|u(k)|p(k) ≥
T∑
k=1

q(k)|u(k)|p+ .

Hence, by the above inequalities and the relation (2.1), we obtain

T+1∑
k=1

|△u(k − 1)|p(k−1) +

T∑
k=1

q(k)|u(k)|p(k) ≥
T+1∑
k=1

|△u(k − 1)|p+ +

T∑
k=1

q(k)|u(k)|p+

= ∥u∥p
+

p+

≥ 2
p−−p+

p−

Kp+
∥u∥p+ .
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(c) Indeed, we deduce by relation (2.1) that

T+1∑
k=1

[
|△u(k − 1)|p(k−1) + q(k)|u(k)|p(k)

]

≤
T+1∑

k=1,βk=p−

|△u(k − 1)|p
+

+
T+1∑

k=1,βk=p+

|△u(k − 1)|p
−

+

T∑
k=1,δk=p−

q(k) |u(k)|p
+

+

T∑
k=1,δk=p+

q(k) |u(k)|p
−

=

T+1∑
k=1

|△u(k − 1)|p+ +

T+1∑
k=1,βk=p+

(
|△u(k − 1)|p− − |△u(k − 1)|p+

)

+
T∑
k=1

q(k)|u(k)|p+ + q
T∑

k=1,δk=p+

(
|u(k)|p− − |u(k)|p+

)

≤
T+1∑
k=1

|△u(k − 1)|p+ + (T + 1) +

T+1∑
k=1

q(k)|u(k)|p+ + qT

= ∥u∥p
+

p+
+ (1 + (1 + q)T ) ≤ 1

Kp+
∥u∥p+ + (1 + (1 + q)T ).

□

Proposition 2.4. Under assumption (H3), the following inequality holds true.

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩

≥

{
c (|u|+ |v|)p(k)−2 |u− v|2 if 1 < p(k) < 2

42−p
+
c|u− v|p(k) if p(k) ≥ 2

(2.13)

for all u, v ∈ R and k ∈ Z(1, T ) such that (u, v) ̸= (0, 0).

Proof. Let u, v ∈ R with (u, v) ̸= (0, 0). Let us denote ϕ(k, u) = a(k, |u|)u.
Then, we have

∂ϕ(k, u)

∂u
= |u|∂a

∂u
(k, |u|) + a(k, |u|),

for all u ∈ R\{0}. It follows by condition (H3) that

∂ϕ(k, u)

∂u
≥ c|u|p(k)−2. (2.14)

Note that

ϕ(k, u)− ϕ(k, v) =

∫ 1

0

∂ϕ(k, v + t(u− v))

∂u
(u− v) dt. (2.15)

For k ∈ Z(0, T ) such that p(k) ≥ 2. By (2.14) and (2.15), we observe that

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ =

∫ 1

0

∂ϕ

∂u
(k, v + t(u− v))(u− v)(u− v) dt

≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2 dt.
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Without loss of generality, we can assume that |u| ≤ |v|. Therefore, one has

|u− v| ≤ |u|+ |v| ⇒ |u− v| ≤ 2|v|.

For t ∈ [0, 1/4],

|v| = |v + t(u− v)− t(u− v)| ≤ |v + t(u− v)|+ |t(u− v)|

≤ |v + t(u− v)|+ 1

4
|u− v|.

Then,

|v + t(u− v)| ≥ 1

4
|u− v|.

It follows that

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2dt

≥ 42−p
+
c|u− v|p(k).

For k ∈ Z(0, T ) with 1 < p(k) < 2. In the similar way as above, we obtain from
condition (H3) that

∂ϕ(k, u)

∂u
≥ c|u|p(k)−2,

for all u ∈ R\{0}.
In addition, let us consider t ∈ [0, 1], then |tu+ (1− t)v| ≤ |u|+ |v|.
We get

|tu+ (1− t)v|p(k)−2 ≥ (|u|+ |v|)p(k)−2 .

Therefore

⟨a(k, |u|)u− a(k, |v|)v, u− v⟩ ≥
∫ 1

0
c|v + t(u− v)|p(k)−2|u− v|2 dt

≥ c (|u|+ |v|)p(k)−2 |u− v|2.

The proof is thus complete. □

Lemma 2.5. Assume that (H1) and (H3) hold. Then, the operator Φ′ : S → S∗

is strictly monotone on S and is a mapping of type (S+), i.e., if un ⇀ u in S as
n→ ∞ and lim sup

n→∞
⟨Φ′(un)−Φ′(u), un−u⟩ ≤ 0, then un → u in S as n→ ∞. Here,

⟨·, ·⟩ denotes the duality pairing between S and its dual S∗.

Proof. We prove the strict monotonicity of Φ′. By using (2.13) and taking into
account the well-known inequality, for any x, y ∈ R,(

|x|p(k)−2x− |y|p(k)−2y
)
(x− y)

≥

{
c1 (|x|+ |y|)p(k)−2 |x− y|2 if 1 < p(k) < 2,

c2|x− y|p(k) if p(k) ≥ 2,
(2.16)

we can write for any u, v ∈ S such that u ̸= v,

⟨Φ′(u)− Φ′(v), u− v⟩
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≥


min {c, c1}

T+1∑
k=1

ŭ(k − 1)p(k−1)−2|△u(k − 1)−△v(k − 1)|2 > 0 if 1 < p(k − 1) < 2,

min
{
42−p

+
c, c2

} T+1∑
k=1

|△u(k − 1)−△v(k − 1)|p(k−1) > 0 if p(k − 1) ≥ 2,

where ŭ(k − 1) = |△u(k − 1)|+ |△v(k − 1)|. Consequently, Φ′ is strictly monotone.
Now, we prove that the operator Φ′ is of type (S+). Let {un} be a sequence in S

such that un ⇀ u in S as n→ ∞ and

lim sup
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

We will show that un → u in S. By the above inequality and the strictly mono-
tonicity of Φ′, we get

lim
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ = 0, (2.17)

which means that

lim
n→∞

[ T+1∑
k=1

(a(k − 1, |△un(k − 1)|)△un(k − 1)− a(k − 1, |△u(k − 1)|)△u(k − 1))

×△(un−u)(k−1)+
T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un−u)(k)

]
= 0.

Since un ⇀ u in S as n→ ∞, one has

lim
n→∞

T+1∑
k=1

(a(k − 1, |△un(k − 1)|)△un(k − 1)− a(k − 1, |△u(k − 1)|)△u(k − 1))

×(△un(k − 1)−△u(k − 1)) = 0,

lim
n→∞

T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k)) = 0.

(2.18)
Now, we prove that φ(un − u) → 0 as n→ ∞. That is,

lim
n→∞

T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1) = 0, (2.19)

lim
n→∞

T∑
k=1

q(k)|un(k)− u(k)|p(k) = 0. (2.20)

We first show (2.19). By (2.16) and Proposition 2.2, we have

⟨Φ′(un)− Φ′(u), un − u⟩

≥


min {c, c1}

T+1∑
k=1

û(k − 1)p(k−1)−2|△un(k − 1)−△u(k − 1)|2 if 1 < p(k − 1) < 2,

min
{
42−p

+
c, c2

} T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1) if p(k − 1) ≥ 2,

(2.21)
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with û(k − 1) = |△un(k − 1)|+ |△u(k − 1)|.

By using the discrete Hölder inequality (see [22]), we know that

T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1)

=

T+1∑
k=1

û(k − 1)
p(k−1)(2−p(k−1))

2

(
û(k − 1)

p(k−1)(p(k−1)−2)
2 |△un(k − 1)−△u(k − 1)|p(k−1)

)
≤ 2∥û

p(·)(2−p(·))
2 ∥ 2

2−p(·)
∥û

p(·)(p(·)−2)
2 |△un(k − 1)−△u(k − 1)|p(·)∥ 2

p(·)

≤ 2∥û∥σp(·)

(
T+1∑
k=1

û(k − 1)p(k−1)−2|△un(k − 1)−△u(k − 1)|2
)ω

, (2.22)

where σ is either p−(2 − p̃)/2 or p̃(2 − p−)/2 and ω is either p−/2 or p̃/2 with
p̃ = sup

{k∈Z:1<p(k)<2}
p(k). Then, by (2.17), (2.21) and (2.22), it follows that

lim
n→∞

T+1∑
k=1

|△un(k − 1)−△u(k − 1)|p(k−1) = 0. (2.23)

Next, we will show (2.20). We suppose that k ∈ Z(0, T ) such that p(k) ≥ 2. For
any u ∈ S, {un} ⊂ S, we get by (2.16) that(

|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)
)
(un(k)− u(k)) ≥ c2|un(k)− u(k)|p(k).

Then, summing up k from 1 to T , one obtains

T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k))

≥ c2

T∑
k=1

q(k)|un(k)− u(k)|p(k). (2.24)

It follows from (2.18) and (2.24) that

lim
n→∞

T∑
k=1

q(k)|un(k)− u(k)|p(k) = 0. (2.25)

Next, for k ∈ Z(0, T ) such that 1 < p(k) < 2, from (2.16), we see that

T∑
k=1

q(k)
(
|un(k)|p(k)−2un(k)− |u(k)|p(k)−2u(k)

)
(un(k)− u(k))

≥ c1

T∑
k=1

q(k)ǔ(k)p(k)−2|un(k)− u(k)|2, (2.26)
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with ǔ(k) = |un(k)|+ |u(k)|.
By using the discrete Hölder inequality (see [22]), we get

T∑
k=1

q(k)|un(k)− u(k)|p(k)

=

T∑
k=1

q(k)ǔ(k)
p(k)(2−p(k))

2

(
ǔ(k)

p(k)(p(k)−2)
2 |un(k)− u(k)|p(k)

)
≤ 2∥q(k)ǔ

p(·)(2−p(·))
2 ∥ 2

2−p(·)
∥q(k)ǔ

p(·)(p(·)−2)
2 |un(k)− u(k)|p(·)∥ 2

p(·)

≤ 2∥ǔ∥νp(·)

(
T∑
k=1

q(k)ǔ(k)p(k)−2|un(k)− u(k)|2
)ς

, (2.27)

where ν is either p−(2− p̂)/2 or p̂(2− p−)/2 and ς is either p−/2 or p̂/2 with
p̂ = max

{k∈Z(0,T ):1<p(k)<2}
p(k). Thus, it follows from (2.18), (2.26) and (2.27) that

lim
n→∞

T∑
k=1

q(k)|un(k)− u(k)|p(k) = 0. (2.28)

Relations (2.23), (2.25), (2.28) combined with (2.7) imply that ∥un−u∥p(·) → 0 and
thus ∥un − u∥ → 0 as n → ∞. This proves that Φ′ is of type (S+). The proof of
Lemma 2.3 is complete. □

Lemma 2.6. Under assumptions (H1) and (H3), the functional Φ : S → R is
weakly lower semicontinuous, i.e., un ⇀ u in S as n → ∞ implies that Φ(u) ≤
lim inf
n→∞

Φ(un).

Proof. Assume that un ⇀ u in S as n → ∞. It follows from (2.11) and Lemma 2.3
that Φ is convex (see [39, Proposition 42.6] ) and therefore for any n ∈ N,

Φ(un) ≥ Φ(u) + ⟨Φ′(u), un − u⟩.

Then,

lim inf
n→∞

Φ(un) ≥ Φ(u) + lim inf
n→∞

⟨Φ′(u), un − u⟩ = Φ(u).

Hence, Φ is weakly lower semicontinuous. The proof is complete. □

3. Existence of at least one nontrivial solution of (1.1)

In this section, one uses the following result due to Bonanno and Bisci (see [10]).

Theorem 3.1. [10] Let X be a reflexive real Banach space and let Φ,Ψ : X →
R be two Gâteaux differentiable functionals such that Φ is (strongly) continuous,
sequentially weakly lower semicontinuous and coercive in X and Ψ is sequentially
weakly upper semicontinuous in X. Let Iλ be the functional defined by Iλ := Φ−λΨ,
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λ ∈ R and for each r > inf
u∈X

Φ(u), let ψ be the function defined by

ψ(r) := inf
u∈Φ−1((−∞,r))

(
sup

v∈Φ−1((−∞,r))

Ψ(v)

)
−Ψ(u)

r − Φ(u)
.

Then, for each r > inf
u∈X

Φ(u) and each λ ∈ (0, 1
ψ(r)), the restriction of Iλ to Φ−1((−∞, r))

has a global minimum.

The main result of this section is the following.

Theorem 3.2. Let ε be a positive constant and assume that f(k, 0) ̸= 0 for some
k ∈ Z(1, T ). Then, for any

λ ∈

0,

(
q1/p

−
)p∗

min {1, c}

p+Lp∗
εp

∗

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

 ,

problem (1.1) has at least one nontrivial solution u ∈ S such that ∥u∥∞ < ε.

Proof. Let us apply Theorem 3.1 by choosing X := S, and put Φ, Ψ and Iλ as in
(2.8), (2.9) and (2.10), respectively. We know from (2.11), (2.12) and Lemma 2.4 that
Φ is a continuously differentiable and sequentially weakly lower semicontinuous in
S and Ψ is a continuously differentiable functional and is sequentially weakly upper
semicontinuous in S. Note that the critical points of Iλ are exactly the solutions of
problem (1.1).

Next, let ∥u∥ > 1. Using the condition (H3) and Lemma 2.2(a), one has

Φ(u) =
T+1∑
k=1

∫ |△u(k−1)|

0
a(k − 1, ξ)ξ dξ +

T∑
k=1

q(k)

p(k)
|u(k)|p(k)

≥ c

p+

T+1∑
k=1

|△u(k − 1)|p(k−1) +
1

p+

T∑
k=1

q(k)|u(k)|p(k)

≥ 1

p+
min {1, c}

(
∥u∥p− − (1 + (1 + q)T )

)
→ ∞ as ∥u∥ → ∞.

Hence, Φ is coercive and Φ and Ψ satisfy all regularity assumptions requested in
Theorem 3.1.

Put

r =

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗
(3.1)

and define

αp∗ :=

{
αp

−
if α > 1,

αp
+

if α < 1
and L :=

{
L1 if ∥u∥ < L1,

L2 if ∥u∥ > L2.
(3.2)
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Clearly, we have r > inf
u∈S

Φ(u). Moreover, for all u ∈ S such that Φ(u) < r, from

(2.3), (2.4), (2.5), (2.6) and (3.2), one has

r > Φ(u) =

T+1∑
k=1

∫ |△u(k−1)|

0
a(k − 1, ξ)ξ dξ +

T∑
k=1

q(k)

p(k)
|u(k)|p(k)

≥ c

p+

T+1∑
k=1

|△u(k − 1)|p(k−1) +
1

p+

T∑
k=1

q(k)|u(k)|p(k)

≥ min {1, c}φ(u)
p+

≥
min {1, c} ∥u∥p

∗

p(·)

p+
≥ min {1, c} ∥u∥p∗

p+Lp∗
,

and so

∥u∥ ≤ L

(
rp+

min {1, c}

)1/p∗

. (3.3)

By (2.2) and (3.3), we can write

∥u∥∞ ≤ q−1/p−∥u∥ ≤ q−1/p−L

(
rp+

min {1, c}

)1/p∗

:= ε.

Therefore,

sup
v∈Φ−1((−∞,r))

Ψ(v) = sup
Φ(v)<r

Ψ(v) = sup
Φ(v)<r

T∑
k=1

F (k, v(k)) ≤
T∑
k=1

max
|ξ|≤ε

F (k, ξ).

By the definition of ψ, since 0X ∈ Φ−1((−∞, r)) and Φ(0X) = Ψ(0X) = 0, one has

ψ(r) = inf
Φ(u)<r

(
sup

Φ(v)<r
Ψ(v)

)
−Ψ(u)

r − Φ(u)
≤

sup
Φ(v)<r

Ψ(v)

r

=

sup
Φ(v)<r

T∑
k=1

F (k, v(k))

r
≤ p+Lp

∗(
q1/p−

)p∗
min {1, c}

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

εp∗
.

Hence, it follows that

λ <

(
q1/p

−
)p∗

min {1, c}

p+Lp∗
εp

∗

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

≤ 1

ψ(r)
,

that is,

λ ∈

0,

(
q1/p

−
)p∗

min {1, c}

p+Lp∗
εp

∗

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

 ⊂
(
0,

1

ψ(r)

)
.
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Therefore, the functional Iλ admits a non-zero critical point u ∈ S such that Φ(u) <
r. □

4. Existence of at least two nontrivial solutions of (1.1)

In this section, one uses the following theorem due to Bonanno and D’Agúı (see
[7]).

Theorem 4.1. [7] Let X be a real finite dimensional Banach space and let Φ,Ψ :
X → R be two continuously Gâteaux differentiable functionals such that inf

u∈X
Φ(u) =

Φ(0) = Ψ(0) = 0. Assume that there exist r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r,
such that

(i) σ =
1

r
sup

u∈Φ−1(]−∞,r])

Ψ(u) <
Ψ(ũ)

Φ(ũ)
= ρ,

(ii) for each λ ∈ Λ := (1ρ ,
1
σ ), the functional Iλ := Φ − λΨ satisfies the (PS)-

condition and it is unbounded from below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points
uλ,1, uλ,2 such that I(uλ,1) < 0 < I(uλ,2).

Let f : Z(1, T )×R → R be a continuous function satisfying the following hypoth-
esis.

(H4) lim inf
|ξ|→∞

∫ ξ

0
f(k, τ) dτ

|ξ|p+
≥ 0, for any k ∈ Z(1, T ).

We will prove that Iλ satisfies the Palais-Smale condition and unbounded from
below.

Lemma 4.2. Assume that (H4) holds. Then, there exists λ∗ > 0 such that
for any λ ∈ (λ∗,∞), the functional Iλ satisfies the Palais-Smale condition and is
unbounded from below.

Proof. Fix λ − λ∗ > 0. Let {un} ⊂ S be a sequence with {Iλ(un)} is bounded and
I ′λ(un) → 0 as n→ ∞. Since S is a finite-dimensional space, it is sufficient to verify
that {un} is bounded. Assume by contradiction that {un} is unbounded. Then,
passing to a subsequence, one has ∥un∥ → ∞ as n→ ∞. Thus, we may assume that
∥un∥ > 1 for any n ∈ N.

Since lim inf
|ξ|→∞

∫ ξ

0
f(k, τ) dτ

|ξ|p+
≥ 0, for ϵ > 0 there exists δ > 0 such that∫ ξ

0
f(k, τ) dτ ≥ ϵ|ξ|p+ for all k ∈ Z(1, T ) and all ξ ∈ R with |ξ| > δ.

Since ξ →
∫ ξ

0
f(k, τ) dτ − ϵ|ξ|p+ is continuous on [−δ, δ], there exists Cδ > 0 such

that ∫ ξ

0
f(k, τ) dτ − ϵ|ξ|p+ ≥ −Cδ for all k ∈ Z(1, T ) and all ξ ∈ [−δ, δ] .
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Consequently, we infer that

∫ ξ

0
f(k, τ) dτ ≥ ϵ|ξ|p+ − Cδ for all (k, ξ) ∈ Z(1, T )× R. (4.1)

So, by using relation (4.1), assumption (H1) and relation (c) of Lemma 2.2, we
deduce that

Iλ(un) =
T+1∑
k=1

∫ |△un(k−1)|

0
a(k − 1, ξ)ξ dξ +

T∑
k=1

q(k)

p(k)
|un(k)|p(k) − λ

T∑
k=1

∫ un(k)

0
f(k, τ) dτ

≤ a1

T+1∑
k=1

|△un(k − 1)|+ a2
p−

T+1∑
k=1

|△un(k − 1)|p(k−1) +
1

p−

T∑
k=1

q(k)|un(k)|p(k)

− λϵ

T∑
k=1

|un(k)|p
+
+ λCδT

≤ 2a1

T∑
k=1

|un(k)|+
max {1, a2}

p−

(
∥un∥p

+

Kp+
+ (1 + (1 + q)T )

)

− λϵ

T∑
k=1

|un(k)|p
+
+ λCδT. (4.2)

Note that

∥un∥p
− ≤ 2p

−−1
T∑
k=1

(
|un(k + 1)|p− + |un(k)|p

−
)
+ q

T∑
k=1

|un(k)|p
−

≤ 2p
−

T∑
k=1

|un(k)|p
−
+ q

T∑
k=1

|un(k)|p
−

≤
(
2p

−
+ q
)
T

p+−p−

p+

(
T∑
k=1

|un(k)|p
+

) p−

p+

.

Therefore,

T∑
k=1

|un(k)|p
+ ≥ ∥un∥p

+

T
p+−p−

p+
(
2p− + q

) p+

p−

. (4.3)



NONLINEAR DISCRETE NEUMANN PROBLEM INVOLVING p(k)-LAPLACIAN OPERATOR 23

Then, we get by (2.2), (4.2) and (4.3) that

Iλ(un) ≤ 2a1T∥u∥∞ +
max {1, a2}

p−

(
∥un∥p

+

Kp+
+ (1 + (1 + q)T )

)

− λϵ
∥un∥p

+

T
p+−p−

p+
(
2p− + q

) p+

p−

+ λCδT

≤ 2a1q
−1/p−T∥un∥+

max {1, a2}
p−Kp+

− λϵ
1

T
p+−p−

p+
(
2p− + q

) p+

p−

 ∥un∥p
+

+
max {1, a2}

p−
(1 + (1 + q)T ) + λCδT.

Thus, if we choose

λ∗ :=
max {1, a2}T

p+−p−

p+

(
2p

−
+ q
) p+

p−

εp−Kp+
,

then for any λ ∈ (λ∗,∞), Iλ(un) → −∞ since ∥un∥ → ∞ and this is a contradiction.
Hence, {un} is bounded and so Iλ satisfies the Palais-Smale condition for all λ ∈
(λ∗,∞).

It remains to show that Iλ is unbounded from below. Suppose that {un} is
unbounded. By assumption (H3) and relation (a) of Lemma 2.2, one has

Iλ(un) ≥
1

p+
min {1, c}

(
∥un∥p

− − (1 + (1 + q)T )
)
.

Since ∥un∥ → ∞, then Iλ(un) → ∞. This is a contradiction by the fact that
{Iλ(un)} is bounded. It follows that the sequence {un} is bounded. Hence, the
proof is complete. □

The existence result immediately follows.
We can now give the existence result of at least two nontrivial solutions of problem
(1.1).

Theorem 4.3. Assume that there exist two positive constants b and ε with

ε >

{
max

{
b, bp

∗}} 1
p∗ (p+)

1
p∗L

(
2a1 +

1

p−
max {1, a2} (2 +Q)

) 1
p∗

q1/p− {min {1, c}}
1
p∗

(4.4)

such that
T∑
k=1

max
|ξ|≤ε

F (k, ξ)

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

< min



T∑
k=1

F (k, b)

max {b, bp∗}
(
2a1 +

1

p−
max {1, a2} (2 +Q)

) , 1

λ∗


.

(4.5)



24 BRAHIM MOUSSA, ISMAËL NYANQUINI AND STANISLAS OUARO

Then, for any

λ ∈

max


max

{
b, bp

∗}(
2a1 +

1

p−
max {1, a2} (2 +Q)

)
T∑
k=1

F (k, b)

, λ∗


,

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

 ,

problem (1.1) admits at least two nontrivial solutions.

Proof. We know that Φ and Ψ are well-defined and continuously Gâteaux differen-
tiable. Clearly, by the definitions of Φ and Ψ, one has

inf
u∈X

Φ(u) = Φ(0) = Ψ(0) = 0.

Note that by Lemma 4.1, the functional Iλ satisfies the Palais-Smale condition for
any λ > λ∗ and it is unbounded from below. On the other hand, put

ũ(k) :=

{
b if k ∈ Z(1, T ),
0 otherwise.

So, we deduce that ũ ∈ S, Ψ(ũ) =
T∑
k=1

F (k, ũ(k)) =
T∑
k=1

F (k, b) and

Φ(ũ) ≤ a1

T+1∑
k=1

|△ũ(k − 1)|+ a2
p−

T+1∑
k=1

|△ũ(k − 1)|p(k−1) +
1

p−

T∑
k=1

q(k)|ũ(k)|p(k)

≤ a1(b+ b) +
1

p−
max {1, a2}

(
bp(0) + bp(T ) +

T∑
k=1

q(k)bp(k)

)

≤ 2a1b+
bp

∗

p−
max {1, a2}

(
2 +

T∑
k=1

q(k)

)

≤ max
{
b, bp

∗
}(

2a1 +
1

p−
max {1, a2} (2 +Q)

)
.

Since

ε >

{
max

{
b, bp

∗}} 1
p∗ (p+)

1
p∗L

(
2a1 +

1

p−
max {1, a2} (2 +Q)

) 1
p∗

q1/p− {min {1, c}}
1
p∗

,

we obtain Φ(ũ) < r, where r is as in (3.1). Moreover, one has

Ψ(ũ)

Φ(ũ)
≥

T∑
k=1

F (k, b)

max {b, bp∗}
(
2a1 +

1

p−
max {1, a2} (2 +Q)

) . (4.6)
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For all u ∈ S such that Φ(u) < r, taking (2.2) and (3.3) into account, one has

∥u∥∞ ≤ q−1/p−∥u∥ ≤ q−1/p−L

(
rp+

min {1, c}

)1/p∗

:= ε.

Therefore,

Φ−1((−∞, r]) ⊆ {u ∈ S such that ∥u∥∞ ≤ ε} .
Thus, one has

sup
u∈Φ−1((−∞,r])

Ψ(u)

r
≤

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

. (4.7)

Taking (4.5), (4.6) and (4.7) into account, one has

σ =
1

r
sup

u∈Φ−1(]−∞,r])

Ψ(u) <
Ψ(ũ)

Φ(ũ)
= ρ.

Therefore, the assertion (i) of Theorem 4.1 follows.
Now, from Lemma 4.1, for each

λ ∈ Λ := (
1

ρ
,
1

σ
),

the functional Iλ satisfies the Palais-Smale condition and it is unbounded from below.
Consequently, the assertion (ii) of Theorem 4.1 follows. Then, all the hypotheses of
Theorem 4.1 hold, and Iλ has at least two non-zero critical points uλ,1, uλ,2 ∈ S such
that I(uλ,1) < 0 < I(uλ,2) for all λ ∈ Λ, which are nontrivial solutions of problem
(1.1). □

5. Existence of at least three nontrivial solutions of (1.1)

In this section, one uses the following theorem due to Bonanno and Marano (see
[9]).

Theorem 5.1. [9] Let X be a reflexive real Banach space and let Φ : X →
R be a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on
X∗, Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact such that inf

u∈X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there

exist r > 0 and ũ ∈ X, with r < Φ(ũ), such that

(i) σ =
1

r
sup

Φ(u)≤r
Ψ(u) <

Ψ(ũ)

Φ(ũ)
= ρ,

(ii) for each λ ∈ Λr := (1ρ ,
1
σ ), the functional Iλ := Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Iλ has at least three nontrivial critical points.

One makes the following additional assumption on the function f : Z(1, T )×R →
R as follows.
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(H5) lim sup
|ξ|→∞

∫ ξ

0
f(k, τ) dτ

|ξ|p−
≤ 0, for any k ∈ Z(1, T ).

Lemma 5.2. Let p− > 1. Assume that the condition (H5) holds. Then, there
exists λ∗ > 0 such that for any λ ∈ (0, λ∗), the functional Iλ is coercive.

Proof. Let ∥u∥ > 1. By assumption (H3), we deduce that

Iλ(u) =
T+1∑
k=1

∫ |△u(k−1)|

0
a(k − 1, ξ)ξ dξ +

T∑
k=1

q(k)

p(k)
|u(k)|p(k) − λ

T∑
k=1

F (k, u(k))

≥ min {1, c}
p+

(
T+1∑
k=1

|△u(k − 1)|p(k−1) +

T∑
k=1

q(k)|u(k)|p(k)
)

− λ
T∑
k=1

∫ u(k)

0
f(k, τ) dτ. (5.1)

By (H5), for ϵ1 > 0, there exists ρ > 0 such that∫ ξ

0
f(k, τ) dτ ≤ ϵ1|ξ|p

−
for all k ∈ Z(1, T ) and ξ ∈ R with |ξ| > ρ.

Since ξ →
∫ ξ

0
f(k, τ) dτ − ϵ1|ξ|p

−
is continuous on [−ρ, ρ], there exists Cρ > 0 such

that ∫ ξ

0
f(k, τ) dτ − ϵ1|ξ|p

− ≤ Cρ for all k ∈ Z(1, T ) and all ξ ∈ [−ρ, ρ] .

Thus, ∫ ξ

0
f(k, τ) dτ ≤ ϵ1|ξ|p

−
+ Cρ for all (k, ξ) ∈ Z(1, T )× R. (5.2)

Now, note that by (2.2), one has

|u(k)|p− ≤ 1

q
∥u∥p− for all k ∈ Z(1, T ).

Then, summing up for k goes from 1 to T , it follows

T∑
k=1

|u(k)|p− ≤ T

q
∥u∥p− . (5.3)

By (5.2) and (5.3), we get

T∑
k=1

∫ u(k)

0
f(k, τ) dτ ≤ ϵ1T

q
∥u∥p− + CρT.
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For u ∈ S such that ∥u∥ > 1, the above estimation combined with (5.1) and Lemma
2.2(a), gives

Iλ(u) ≥ min {1, c}
p+

(
∥u∥p− − (1 + (1 + q)T )

)
− λ

ϵ1T

q
∥u∥p− − λCρT

≥
(
min {1, c}

p+
− λ

ϵ1T

q

)
∥u∥p− −

(
min {1, c}

p+
(1 + (1 + q)T ) + λCρT

)
.

Choosing

λ∗ =
qmin {1, c}
p+ϵ1T

,

we obtain that Iλ(u) → ∞ as ∥u∥ → ∞. We conclude that for any λ ∈ (0, λ∗), Iλ is
coercive. □

We have the following result.

Theorem 5.3. Let p− > 1. Assume that there exist two positive constants cd

and d with d >
q1/p

−
ε

L
, such that

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

< min


cd

T∑
k=1

F (k, d)

dp
∗

p+
min {1, c} (2 +Q)

,
1

λ∗


.

Then, for any

λ ∈

max


dp

∗

p+
min {1, c} (2 +Q)

cd

T∑
k=1

F (k, d)

, λ∗


,

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

 ,

problem (1.1) admits at least three nontrivial solutions.

Proof. We know that Φ and Ψ are well defined and continuously Gâteaux differ-
entiable, and inf

u∈X
Φ(u) = Φ(0) = Ψ(0) = 0. Furthermore, by Lemma 2.4, Φ is

sequentially weakly lower semicontinuous, while Proposition 1 of [11] ensures that
Φ′ admits a continuous inverse on X∗. Form Lemma 5.1, the assertion (ii) of The-
orem 5.1 follows.

In order to prove (i) of Theorem 5.1, we consider ṽ ∈ S defined as follows.

ṽ(k) :=

{
d if k ∈ Z(1, T ),
0 if k = 0 or k = T + 1.
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So, we deduce that

Φ(ṽ) ≥ c

p+

(
dp(0) + dp(T )

)
+

1

p+

T∑
k=1

q(k)dp(k)

≥ 1

p+
min {1, c}

(
dp(0) + dp(T ) +

T∑
k=1

q(k)dp(k)

)

≥ dp
∗

p+
min {1, c} (2 +Q).

Hence, from d >
q1/p

−
ε

L
, we can write Φ(ṽ) > r, where r is as in (3.1). Moreover,

one has

Ψ(ṽ)

Φ(ṽ)
≤

T∑
k=1

F (k, d)

dp
∗

p+
min {1, c} (2 +Q)

.

For all u ∈ Φ−1((−∞, r]), similarly to (4.7), one has

sup
u∈Φ−1((−∞,r])

Ψ(u)

r
≤

T∑
k=1

max
|ξ|≤ε

F (k, ξ)

(
q1/p

−
)p∗

min {1, c} εp∗

p+Lp∗

.

Therefore, (i) of Theorem 5.1 follows. Thus, all the assumptions of Theorem 5.1
are fulfilled, and then, for all λ ∈ Λ, the functional Iλ has at least three nontrivial
critical points, which are three nontrivial solutions of problem (1.1). □

References

[1] R.P. Agarwal; Difference Equations and Inequalities. Marcel Dekker Inc, (2000).
[2] R.P. Agarwal, K. Perera and D. O’Regan; Multiple positive solutions of singular and nonsin-

gular discrete problems via variational methods. Nonlinear Anal. 58, 69-73 (2004).
[3] F.M. Atici and A. Cabada; Existence and uniqueness results for discrete second-order periodic

boundary value problems. Comput. Math. Appl. 45, 1417-1427 (2003).
[4] M. Barghouthe, A. Ayoujil and M. Berrajaa; Existence and multiplicity of solutions for a class

of discrete problems with the p(k)-Laplacian-like operators. J. Math. Sci. (2024).
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[8] G. Bonanno, P. Candito and G. D’Agúı; Variational methods on finite-dimensional Banach

spaces and discrete problems. Adv. Nonlinear stud. 14, 915-939 (2014).
[9] G. Bonanno and S.A Marano; On the structure of the critical set of non-differentiable functions

with a weak compactness condition. Appl. Anal. 89(1), 1-10 (2010).



NONLINEAR DISCRETE NEUMANN PROBLEM INVOLVING p(k)-LAPLACIAN OPERATOR 29

[10] G. Bonanno and G.M Bisci; Infinitely many solutions for a boundary value problem with dis-
continuous nonlinearities. Bound. Value Probl. 2009, 670-675 (2009).

[11] G. Bonanno and P. Candito; Three solutions to a Neumann problem for elliptic equations
involving the p-Laplacian. Arch. Math. (Basel). 80, 424-429 (2003).
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[37] M. Růžička; Electrorheological Fluids: Modelling and Mathematical theory. Lecture Notes in
Mathematics 1748. Springer, Berlin (2002).

[38] Y. Tian and W. Ge; The existence of solutions for a second-order discrete Neumann problem
with a p-Laplacian. J. Appl. Math. Comput. 26, 333-340 (2008).

[39] E. Zeidler; Nonlinear Functional Analysis and its Applications III. Springer, New York (1985).
[40] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity. Math. USSR.

Izv. 29, 33-66 (1987).

Received 13 December 2024
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